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Basic Verilog
 Lexical Convention

 Lexical convention are close to C++.

 Comment
 // to the end of the line.
 /* to */ across several lines

 Keywords are lower case letter & it is case sensitive

 VERILOG uses 4 valued logic: 0, 1, x and z

 Comments: // Verilog code for AND-OR-INVERT gate
module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

…

<functionality_of_module>

…

endmodule
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Module portsModule name

Verilog keywords

Taste of Verilog

module Add_half ( sum, c_out, a, b );
input
output
wire

a, b;
sum, c_out;  
c_out_bar;

xor (sum, a, b);
// xor G1(sum, a, b);
nand (c_out_bar, a, b);
not (c_out, c_out_bar);

endmodule

Declaration of port  
modes

Declaration of internal  
signal

c_out

a
b sum

c_out_bar

Instantiation of primitive  
gates

G1

SUNY – New Paltz
Elect. & Comp.  Eng. 

Lexical Convention
• Numbers are specified in the 

traditional form  or below .
<size><base format><number>

• Size: contains decimal digitals 
that specify the  size of the 
constant in the number of bits.

• Base format: is the single 
character ‘ followed  by one of 
the following characters  
b(binary),d(decimal),o(octal),h(hex).

• Number: legal digital.

Example :
• 347 -- decimal number
• 4’b101 -- 4- bit 01012

• 2’o12 -- 2-bit octal number
• 5’h87f7 -- 5-digit 87F716

• 2’d83 -- 2-digit decimal
• String in double quotes

“ this is a introduction”
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Three Modeling Styles in Verilog

 Structural modeling (Gate-level)
 Use predefined or user-defined primitive gates.

 Dataflow modeling
 Use assignment statements (assign)

 Behavioral modeling
 Use procedural assignment statements (always)

SUNY – New Paltz
Elect. & Comp.  Eng. 

Structural Verilog Description of Two-Bit 
Greater-Than Circuit
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Dissection

 Module and Port declarations
 Verilog-2001 syntax
 module AOI (input A, B, C, D, output F);

 Verilog-1995 syntax
module AOI (A, B, C, D, F);

input A, B, C, D;
output F;

 Wires: Continuous assignment to an internal signal

SUNY – New Paltz
Elect. & Comp.  Eng. 

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

wire F;  // the default

wire AB, CD, O;  // necessary

assign AB = A & B;

assign CD = C & D;

assign O = AB | CD;

assign F = ~O;

endmodule

// end of Verilog code

Continuous Assignments
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A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for  AND, ‘|’ for OR, ‘^’ for XOR ‘^~’ for XNOR, ‘&~’ for NAND

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Verilog Description of Two-Bit 
Greater-Than Comparator
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Conditional Dataflow Verilog Description 
of Two-Bit Greater-Than Circuit

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Description of Two-Bit Greater-
Than Circuit
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A Design Hierarchy
 Module Instances

 MUX_2 module contains references to 
each of the lower level modules

// Verilog code for 2-input multiplexer

module MUX2 (input SEL, A, B, output F);  
// 2:1 multiplexer

// wires SELB and FB are implicit

// Module instances...

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (.A(FB), .F(F));   // Named mapping

endmodule

// end of Verilog code

// Verilog code for 2-input multiplexer
module INV (input A, output F);   // An inverter
assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);
assign F = ~((A & B) | (C & D));

endmodule

F = (SEL)’. A + (SEL).B
SELB = (SEL)’
F=(SELB).A + (SEL).B
1. Invert SEL and get SELB 
2. Use AOI and get F’
3. Invert F’ and get F

SUNY – New Paltz
Elect. & Comp.  Eng. 

Another Example
module decoder (A,B, D0,D1,D2,D3);

input A,B;

output D0,D1,D2,D3;

assign  D0 = ~A&~B;

assign  D1 = ~A&B;

assign  D2 = A&~B;

assign  D3 = A&B;

endmodule
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Hierarchical representation of Adder 
module fulladder (A,B,CIN, S,COUT);

input A,B,CIN;

output S,COUT;

assign S = A ^ B ^ CIN;

assign COUT = (A & B) |(A & CIN) 
| (B & CIN);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0, S3,S2,S1,S0,COUT);

input  CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0;

output  S3, S2, S1, S0, COUT;

wire C1, C2, C3;

fulladder FA0 (X0, Y0, CIN, S0, C1);

fulladder FA1 (X1, Y1, C1, S1, C2);

fulladder FA2 (X2, Y2, C2, S2, C3);

fulladder FA3 (X3, Y3, C3, S3, COUT);

endmodule
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module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire  [4:0] C;

full _adder  FA0 (B(0), A(0), C(0), S(0), C(1));

full _adder  FA1 (B(1), A(1), C(1), S(1), C(2));

full _adder  FA2 (B(2), A(2), C(2), S(2), C(3));

full _adder  FA3 (B(3), A(3), C(3), S(3), C(4));

assign C(0) = CIN;

assign COUT = C(4);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)

 Gate instantiations
 and (z, x, y), or (c, a, b), xor (S, x, y), etc.

 Continuous assignments
 assign Z = x & y; c = a | b; S = x ^ y

2. Procedural statements (sequential)
(executed in the order written in the code)

 always @ - executed continuously when the event is active
 Initial - executed only once (used in simulation)
 if then else statements
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Behavioral Description

module Add_half ( sum, c_out, a, b );
input  
output

a, b;
sum, c_out;

// Exclusive or
// And

reg sum, c_out;
always @ ( a or b )

begin
sum = a ^ b;  
c_out = a & b;

end  
endmodule

b
Add_halfa su

c_

m  

out

Event control  
expression or 
sensitivity listProcedure  

assignment  
statements

Must be of the  
‘reg’ type

SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Statement

 Conditional_expression ? true_expression : false expression;

Example:
 Assign A = (B<C) ? (D+5) : (D+2);
 if B is less than C, the value of A will be D + 5, or else A will have the 

value D + 2.  

 An if-else statement is a procedural statement.
//Behavioral specification

module mux2to1 (w0, w1, s, F);

input wo,w1,s;

output F;

reg F;

always @ (w0,w1,s)
if (s==1) F = w1;
else F = w0;
endmodule

sensitivity list

always @ (w0,w1,s)
F = s ? w1: w2;
endmodule
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Mux 4-to-1
module mux4to1 (w0, w1,w2, w3, S, F);

input w0,w1,w2,w3,[1:0] S;

output F;

reg F;

always @ (w0,w1,w2,w3,S)

if (S==0) F = w0;

else if (S==1) F = w1;

else if (S==2) F = w2;

else F = w3;

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Boolean Operators in Verilog
Verilog Operator Name Functional Group

>   >=   < <=

greater than greater 
than or equal to less 
than less than or equal 
to

relational

== !=
case equality case 
inequality

equality 

&   ^ |
bit-wise AND bit-wise 
XOR bit-wise OR

bit-wise bit-wise

&& ||
logical AND logical 
OR

logical
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Another Example

//Dataflow description of a 4-bit comparator.
module mag_comp (A,B,ALTB,AGTB,AEQB);

input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Modeling

//Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

concatenation Binary addition
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Design of an ALU using Case 
Statement

// 74381 ALU 
module alu(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F; 
always @(s or A or B) 
case (s) 
0: F = 4'b0000; 
1: F = B - A; 
2: F = A - B; 
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule

S Function

0 Clear

1 B-A 

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s

SUNY – New Paltz
Elect. & Comp.  Eng. 

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c  but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all  right-hand 
sides have been evaluated (end of simulation  timestep)

• Sometimes, as above, both produce the same result.  Sometimes, not!

 Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

 Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)  
begin
x = a | b; 1. Evaluate a | b, assign result to x

y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)  
begin

x.<= a | b;
y.<= a ^ b ^ c;  
z <= b & ~c;

end 4. Assign x, y, and z with their new values
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Blocking vs. Nonblocking Assignments
 The = token represents a blocking blocking procedural assignment
 Evaluated and assigned in a single step 
 Execution flow within the procedure is blocked until the 

assignment is completed 

 The <= token represents a non-blocking assignment
 Evaluated and assigned in two steps: 

1. The right hand side is evaluated immediately 
2. The assignment to the left-hand side is postponed until other 

evaluations in the current time step are completed 

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] <= word[ 7:0]; 
word[ 7:0] <= word[15:8]; 
end

//swap bytes in word 
always @(posedge clk) 
begin 
word[15:8] = word[ 7:0]; 
word[ 7:0] = word[15:8]; 
end

SUNY – New Paltz
Elect. & Comp.  Eng. 

Why two ways of assigning values?
Conceptual need for two kinds of assignment (in always blocks):

a  

b

a  
b

c

x  

y

Blocking:
Evaluation and assignment  
are immediate

a = b  
b = a

x = a & b  
y = x | c

Non-Blocking: a <= b
Assignment is postponed until
all r.h.s. evaluations are done b <= a

x <= a & b  
y <= x | c

When to use:
( only in always blocks! )

Sequential  
Circuits

Combinational  
Circuits
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Golden Rules 
 Golden Rule 1:

To synthesize combinational logic using an always block, all 
inputs to the design must appear in the sensitivity list.

 Golden Rule 2:

To synthesize combinational logic using an always block, all 
variables must be assigned under all conditions.

SUNY – New Paltz
Elect. & Comp.  Eng. 

Golden Rules 

reg f;
always @ (sel, a)
begin :
if (sel == 1)
f = a;

end

• What if sel = 0?
• Keep the current value

• Undesired functionality 
• Unintended latch

• Need to include else

reg f;
always @ (sel, a, b)
begin :
if (sel == 1)
f = a;

else
f = b;

end

• Proper as intended

Reg f;
always @ (sel, a, b)
begin f = b;

if (sel == 1)
f = a;

end

• Setting variables 
to default values 
at the start of the 
always block

• OK as well!
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Verilog 
Operator

Name Functional 
Group

[ ] bit-select or part-
select

( ) parenthesis

!
~
&
|

~&
~|
^

~^ or ^~

logical negation
negation
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR

logical
bit-wise

reduction
reduction
reduction
reduction
reduction
reduction

+
-

unary (sign) plus
unary (sign) minus

arithmetic
arithmetic

{ } concatenation concatenation

{{ }} replication replication

*
/
%

multiply
divide
modulus

arithmetic
arithmetic
arithmetic

Verilog 
Operator

Name Functional 
Group

+
-

binary plus
binary minus

arithmetic
arithmetic

<<
>>

shift left
shift right

shift
shift

>
>=
<

<=

greater than
greater than or equal 
to
less than
less than or equal to

relational
relational
relational
relational

==
!=

case equality
case inequality

equality
equality

&
^
|

bit-wise AND
bit-wise XOR
bit-wise OR

bit-wise
bit-wise
bit-wise

&&
||

logical AND
logical OR

logical
logical

?: conditional conditional

SUNY – New Paltz
Elect. & Comp.  Eng. 

Appendix
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Arithmetic in Verilog
module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5);

input [2:0] A, B;

output [3:0] Y1;

output [4:0] Y3;

output [2:0] Y2, Y4, Y5;

reg [3:0] Y1;

reg [4:0] Y3;

reg [2:0] Y2, Y4, Y5;

always @(A or B)

begin

Y1=A+B;//addition

Y2=A-B;//subtraction

Y3=A*B;//multiplication

Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Sign Arithmetic in Verilog

module Sign (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output [3:0] Y1, Y2, Y3;

reg [3:0] Y1, Y2, Y3;

always @(A or B)

begin

Y1=+A/-B;

Y2=-A+-B;

Y3=A*-B;

end

endmodule
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Equality and inequality Operations in Verilog
module Equality (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output Y1, Y2;

output [2:0] Y3;

reg Y1, Y2;

reg [2:0] Y3;

always @(A or B)

begin

Y1=A==B;//Y1=1 if A equivalent to B

Y2=A!=B;//Y2=1 if A not equivalent to B

if (A==B)//parenthesis needed

Y3=A;

else

Y3=B;

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Logical Operations in Verilog
module Logical (A, B, C, D, E, F, Y);

input [2:0] A, B, C, D, E, F;

output Y;

reg Y;

always @(A or B or C or D or E or F)

begin

if ((A==B) && ((C>D) || !(E<F)))

Y=1;

else

Y=0;

end

endmodule
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Bit-wise Operations in Verilog
module Bitwise (A, B, Y);

input [6:0] A;

input [5:0] B;

output [6:0] Y;

reg [6:0] Y;

always @(A or B)

begin

Y[0]=A[0]&B[0]; //binary AND

Y[1]=A[1]|B[1]; //binary OR

Y[2]=!(A[2]&B[2]); //negated AND

Y[3]=!(A[3]|B[3]); //negated OR

Y[4]=A[4]^B[4]; //binary XOR

Y[5]=A[5]~^B[5]; //binary XNOR

Y[6]=!A[6]; //unary negation

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

. Concatenation and Replication in Verilog
 The concatenation operator "{ , }" combines (concatenates) the bits 

of two or more data objects. The objects may be scalar (single bit) or 
vectored (multiple bit). Multiple concatenations may be performed 
with a constant prefix and is known as replication.

module Concatenation (A, B, Y);

input [2:0] A, B;

output [14:0] Y;

parameter C=3'b011;

reg [14:0] Y;

always @(A or B)

begin

Y={A, B, {2{C}}, 3'b110};

end

endmodule
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Shift Operations in Verilog

module Shift (A, Y1, Y2);

input [7:0] A;

output [7:0] Y1, Y2;

parameter B=3; reg [7:0] Y1, Y2;

always @(A)

begin

Y1=A<<B; //logical shift left

Y2=A>>B; //logical shift right

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Operations in Verilog

module Conditional (Time, Y);

input [2:0] Time;

output [2:0] Y;

reg [2:0] Y;

parameter Zero =3b'000;

parameter TimeOut = 3b'110;

always @(Time)

begin

Y=(Time!=TimeOut) ? Time +1 : Zero;

end

endmodule
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Reduction Operations in Verilog
module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6);

input [3:0] A;

output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1, Y2, Y3, Y4, Y5, Y6;

always @(A)

begin

Y1=&A; //reduction AND

Y2=|A; //reduction OR

Y3=~&A; //reduction NAND

Y4=~|A; //reduction NOR

Y5=^A; //reduction XOR

Y6=~^A; //reduction XNOR

end

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 
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Testbench for the Structural Model of the 
Two-Bit Greater-Than Comparator

SUNY – New Paltz
Elect. & Comp.  Eng. 

Propagation Delay for an Inverter
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Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)
input A, B, C;
output D, E;
wire  w1;
and # (30) G1 (w1, A, B);
not #10 G2 (E, C);
or #(20) G3 (D, w1, E);
endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Interaction between stimulus 
and design modules


